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Top  Jets
Purely Hadronic Hadronic BR ~2/3

What happens when top decay is Highly boosted ?

Final states become highly collimated 

Top peak in jet mass ?

Focus on Top Jet Mass Distribution. Mass Tag



Top jets collimate @ high PT 

∆R ∼ 2mT /pT

Almeida, Lee, GP,  Sung & Virzi.

 Boosted top jets & collimation   

R2 = (∆η)2 + (∆φ)2
p
min
T

< R >

R ∼ 2mJ/pT

Cone Size:

PT vs. <R> on Top



summary, the results of the transfer function should be viewed simply as realistic detector
smearing.

In this paper, a jet is transferred as follows. The transverse momentum and mass of
truth-level jets are smeared according to the appropriate distribution. For the purposes of
modeling the effects of the JES, the means of the pT distributions are shifted accordingly,
without cross correlation to the mass smearing. This is a subtle point. Depending on the
reconstruction mechanism, reported jet masses may depend proportionally on the JES; a
JES shift results in a jet mass shift. In our study of the effects of the JES, we do not make
a correlation between the pT and mass distributions. This effect is much smaller, and such
precision is not warranted in these studies.
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Figure 1: We compare the mass distribution of the leading jet
(

pT
lead ≥ 1000 GeV

)

for the
tt̄ signal with (the red dotted curve) and without (the black solid curve) leading detector
effects. The plot on the left corresponds to C4 jets; the plot on the right corresponds to
C7 jets.

In Fig. 1, we compare the tt̄ jet mass distributions for C4 and C7 jets, with and without
detector smearing, for pT

lead ≥ 1000 GeV. We see, as expected, that due to the finite cone
size even the top jet mass distribution is far from the naive Breit-Wigner shape. In cases
where the outgoing b quark is outside the cone, we expect that the top jet mass to be
peaked around the W mass. In cases where one of the quarks from the W decay is outside
the cone we expect a smooth distribution with a typical invariant mass of roughly mt/

√
2,

etc. These effects are present even at the truth level, without detector effects. The black
curve shows a smooth distribution with a spurious peak around the W mass. The red curve
demonstrates how the detector effects further smear the top jet mass distribution.

3 QCD Jet Background

If jet mass methods are to be viable, we must be able to characterize the dominant QCD jet
background [38]. One of the primary points in this work is that we are able to understand
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Top Jets @ the LHC

Counting in the mass window, seems hopeless…
S/B ∼ 10

−2
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This x-section factorizes

Jet Production:

the QCD jet background analytically as well as through MC simulations. In this section,
we present the summary of our analytic calculations of the QCD jet mass distribution
based on the factorization formalism [39, 40], which is presented in the Appendix. We
compare our theoretical prediction with simulated MC data. Note that the final states,
which induce the jet masses, simulated by MC event generators are much more complicated
(due to radiation, showering etc.) than our simple two body final states. Yet, as we shall
see, we can consistently describe the simulated MC data.

3.1 Analytic Prediction

We are interested in looking at the following processes:

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + X

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + J2(m
2
J2

, p2,T , R) + X

where, Hi are the initial hadrons, pi being the corresponding momenta, and the final states
include jets in the direction of the outgoing partons of the underlying process, with a fixed
jet mass, mJi

, “cone size” R2 = ∆η2 + ∆φ2 and tranverse momenta, pi,T .

We begin with the factorized hadronic cross section for single inclusive jet processes,

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)
dσ̂ab→cX

dpTdmJdη
(xa, xb, pT , η, mJ , R) ,

(3.1)

which in the limit of small R, we can further factorize into (see Appendix B),

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)Hab→cX(xa, xb, pT , η, R)

×Jc
1(mJ , pT , R). (3.2)

The factorization and renormalization scales are chosen to be pT , φi is the PDF for the initial
hadrons, Hab→cX denotes the perturbative cross section, and Jc denotes jet functions, whose
matrix elements are defined in Appendix A (see e.g. [41] for recent reviews and references
therein). Furthermore the Jcs are, by definition, normalized as

∫

dmJ Jc = 1 . (3.3)

We have used the fact that the jet functions do not depend on η in the leading expansion
(see Appendix A). Therefore, we can write Eq. (3.2) for the hadronic cross section as

dσ(R)

dpT dmJ
=

∑

c

Jc(mJ , pT , R)
dσ̂c(R)

dpT
, (3.4)
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QCD Jet Mass distribution

Leading Contribution: Single Gluon Emission
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Jet Functions

Quarks jets

Gluons jets

Appendix

A Jets at Fixed Invariant Mass

Here we give details of the definitions and calculations for the jet functions that we employ
in section 3. Single inclusive Jet cross sections have been studied intensively [38, 46, 47, 48].
Here, we are interested in computing the QCD background to jets of measured mass. The
main background to the production of tt̄ pairs is from dijet production from hadronic
collisions,

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , η1, R) + J2(m
2
J2

, p2,T , η2, R) + X, (A.1)

where the final states are jets in the directions of the outgoing partons, each with a fixed jet
mass m2

J , a “cone size” R2 = ∆η2 +∆φ2, and transverse momenta, pi,T . For simplicity we
choose the cone sizes equal for the two jets, although they can be different. For R < 1, we
can isolate the leading (R0) dependence of such cross-sections in factorized “jet” functions,

dσHAHB→J1J2

dpT dm2
J1

dm2
J2

dη1dη2
=

∑

abcd

∫

dxa dxb φa(xa) φb(xb)Hab→cd (xa, xb, pT , η1, η2, αS(pT ))

×Jc
1(m

2
J1

, pT cosh η1, R, αS(pT )) Jd
2 (m2

J2
, pT cosh η2, R, αS(pT )),

(A.2)

with corrections that vanish as powers of R. Here the φ’s are parton distribution functions
for the initial hadrons, Hab→cd is a perturbative 2 → 2 QCD hard-scattering function,
equal to the dijet Born cross section at lowest order, and the Ji are jet functions, which are
defined below. Jet function Ji summarizes the formation of a set of final state particles with

fixed invariant mass and momenta collinear to the ith outgoing parton. Corrections to the
cross section of order R0 can only occur through collinear enhancements which factorize
into these functions [49].

Following Ref. [40] we define jet function for quarks at fixed jet mass by

Jq
i (m2

J , p0,Ji
, R) =

(2π)3

2
√

2 (p0,Ji
)2

ξµ

Nc

∑

NJi

Tr
{

γµ〈0|q(0)Φ(q̄)†
ξ (∞, 0)|NJi

〉〈NJi
|Φ(q̄)

ξ (∞, 0)q̄(0)|0〉
}

×δ
(

m2
J − m̃2

J (NJi
, R)

)

δ(2)(n̂ − ñ(NJi
))δ(p0,Ji

− ω(NJc)), (A.3)

where m̃2
J(NJi

, R) is the invariant mass of all particles within the cone centered on direction
n̂ in state NJi

. Correspondingly, gluon jet functions are defined by

Jg
i (m2

J , p0,Ji
, R) =

(2π)3

2(p0,Ji
)3

∑

NJi

〈0|ξσF
σν(0)Φ(g)†

ξ (0,∞) |NJi
〉〈NJi

|Φ(g)
ξ (0,∞)F ρ

ν (0)ξρ|0〉

×δ
(

m2
J − m̃2

J(NJi
, R)

)

δ(2)(n̂ − ñ(NJi
))δ(p0,Ji

− ω(NJc)). (A.4)
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Quark Jet Function, in detail...
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Figure 19: Feynman rules associated with the F+ν operator at the end of a Wilson line.

k

ij −i g ta,ij
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Figure 20: Feynman rules associated with eikonal lines, from the expansion of the Wilson
lines.
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Figure 21: Real contributions to the quark jet function at order αS.
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where we choose k to represent the gluon and p the quark. For k the softer momentum, we
easily see that θk ≥ θp. Therefore, p0 = k0 fixes the minimum angle for the softest particle,
and we find cos(θS,min) = βi. The region ωp < ωk is found by simply interchanging p and
k in |M(p, k)|2 so that

Jq(1)
i (m2

J , p0,Ji
, R) =

βi

16
√

2

∫ βi

cos(R)

d cos θS

(2π)2

m2
Ji

/p2
0,J

(

2(1 − βi cos θS) −
m2

Ji

p2
0,J

)

1

p0,J(1 − βi cos θS)

×
(

|Mqi
(p, k)|2 + |Mqi

(k, p)|2
)

. (A.13)

The evaluation of |Mqi
(p, k)|2 is straightforward from the diagrams of Fig. 21, and we find

Jq(1)
i (m2

J , p0,Ji
, R) =

CFβi

4m2
Ji

∫ βi

cos(R)

d cos θS

π

αS(k0) z4

(2(1 − βi cos θS) − z2) (1 − βi cos θS)
×

{

z2 (1 + cos θS)2

(1 − βi cos θS)

1

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))
+

3(1 + βi)

z2
+

1

z4

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))2

(1 + cos θS)(1 − βi cos θS)

}

,

(A.14)

where z =
mJi

p0,Ji
, p0,Ji

=
√

m2
Ji

+ p2
T , and k0 =

p0,Ji

2
z2

1−βi cos θS
.

The calculation of the gluon jet function proceeds along the same lines, with the
exception that both particles in the final states are now identical, and the presence of the
field strengths, which appear at the end of each Wilson line. The rules for these vertices,
as mentioned before, are shown in Fig. 19. Once again, we can write the gluon jet function
as an integral over the angle of the softer particle,

Jg(1)
i (m2

J , p0,Ji
, R) =

βi

16m2
Ji

∫ βi

cos(R)

d cos θS

(2π)2p2
0,Ji

z2

(2(1 − βi cos θS) − z2) (1 − βi cos θS)
|Mgi

(p, k)|2 ,

(A.15)

where |Mgi
(p, k)|2 is symmetric under the interchange of p and k. We find from the

diagrams shown in Fig. 22, the result

Jg(1)
i (m2

J , p0,Ji
, R) =

CAβi

16m2
Ji

∫ βi

cos(R)

d cos θS

π

αS(k0)

(1 − β cos θS)2(1 − cos2 θS)(2(1 + β) − z2)

×
(

z4(1 + cos θS)2 + z2(1 − cos2 θS)(2(1 + βi) − z2) + (1 − cos θS)2(2(1 + βi) − z2)2
)2

.

(A.16)

These one-loop expressions have been used to generate the comparisons to event generator
output given in Section 3.

40

z = mJ/p0,Ji

βi =

√

1 − z2

θS : Angle between Jet axis and softer particle

k0 =
p0,J

2

z2

1 − βi cos θS
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×

{

z2 (1 + cos θS)2

(1 − βi cos θS)

1

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))
+

3(1 + βi)

z2
+

1

z4

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))2

(1 + cos θS)(1 − βi cos θS)

}

,

(A.14)

where z =
mJi

p0,Ji
, p0,Ji

=
√

m2
Ji

+ p2
T , and k0 =

p0,Ji

2
z2

1−βi cos θS
.

The calculation of the gluon jet function proceeds along the same lines, with the
exception that both particles in the final states are now identical, and the presence of the
field strengths, which appear at the end of each Wilson line. The rules for these vertices,
as mentioned before, are shown in Fig. 19. Once again, we can write the gluon jet function
as an integral over the angle of the softer particle,

Jg(1)
i (m2

J , p0,Ji
, R) =

βi

16m2
Ji

∫ βi

cos(R)

d cos θS

(2π)2p2
0,Ji

z2

(2(1 − βi cos θS) − z2) (1 − βi cos θS)
|Mgi

(p, k)|2 ,

(A.15)

where |Mgi
(p, k)|2 is symmetric under the interchange of p and k. We find from the

diagrams shown in Fig. 22, the result

Jg(1)
i (m2

J , p0,Ji
, R) =

CAβi

16m2
Ji

∫ βi

cos(R)

d cos θS

π

αS(k0)

(1 − β cos θS)2(1 − cos2 θS)(2(1 + β) − z2)

×
(

z4(1 + cos θS)2 + z2(1 − cos2 θS)(2(1 + βi) − z2) + (1 − cos θS)2(2(1 + βi) − z2)2
)2

.

(A.16)

These one-loop expressions have been used to generate the comparisons to event generator
output given in Section 3.
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Figure 2: Various theoretical gluon-jet mass distributions, along with a 1/mJ curve, are
plotted for pT = 1 TeV and R = 0.4. Plotted are the jet mass distribution from (A.16)
with running (red, dashed), and fixed (blue, dotted) coupling, along with the eikonal jet
function (green, dashed-dotted) with fixed coupling. For the jet functions with no running
the scales were chosen be pT .

approximation is equivalent to a no recoil approximation, thus resulting overall in a harder
process than the result in Eq. (A.16) at fixed scales.

For the purpose of comparing the mass distributions obtained from jet functions and
the MC simulations, Eq. (3.5) can be matched to (dσc(R)/dpT )MC obtained from MC,
leading to the following relation,

dσc
pred(R)

dpT dmJ
= Jc (mJ , pT , R)

(

dσc (R)

dpT

)

MC

, (3.7)

for the prediction of quark and gluon jet mass distribution based on perturbative calculated
jet functions, Eqs. (A.14) and (A.16). Note, however, that this would require us to split
the MC output in terms of the parton flavours c, which for realistic simulation leads to
ambiguities especially when matching is used. Therefore, for our analysis, instead, we use
the analytic result to suggest bounds for the “data” distribution from the MC. There is,
however, no a posteriori way to determine the flavour which initiated the jet (as with real
data). Thus, we write

dσpred(R)

dpTdmJ upper bound

= Jg (mJ , pT , R)
∑

c

(

dσc (R)

dpT

)

MC

, (3.8)

dσpred(R)

dpT dmJ lower bound

= Jq (mJ , pT , R)
∑

c

(

dσc (R)

dpT

)

MC

, (3.9)
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(from sherpa) Di-Jet     tt̄Vs. SMEx:
of magnitude larger than the signal. Once we add detector effects the significance of the
signal is further deteriorated. We conclude that a simple counting method would not be
effective here.
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Figure 10: The jet mass distributions for the tt̄ and QCD jet samples. The plots on the
top row correspond to a pT

lead ≥ 1000 GeV. The plots on the bottom row correspond
to a pT

lead ≥ 1500 GeV. The plots on the left correspond to R = 0.4; the plots on the
right correspond to R = 0.7. The theoretical bounds, Eq. (3.10), are also plotted. These
numbers are tabulated in table 3.

5.2.1 Detector Effects

Here, we repeat the truth-level procedure from above, accounting for the leading effects
of detector resolution and ±5% jet energy scale. We also tabulate the relative change in
acceptance of the signal and background, due to detector resolution and energy scale, which
we define as

∆JES =
NJES − NTRUTH

NTRUTH
, (5.20)

where NJES is the number of events passing the selection criteria after detector smearing
and JES effects have been applied. These results are tabulated in table 4, which shows
how the signal and background are affected differently by smearing effects. We see that the

20



 (GeV)JM
100 120 140 160 180 200 220 240 260 280 300
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Background Sideband Fit

 Cut
G

Background w/ m

Jet Function Fit

Jet Mass

Figure 11: A typical example of fitting jet functions to the jet mass distribution in the
sideband regions (120 GeV ≤ mJ ≤ 140 GeV)∪ (210 GeV < mJ < 280 GeV). This plot cor-
responds to a single-tag analysis with C7 jets with pT ≥ 1000 GeV.
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Figure 12: The results of fitting jet functions + signal shape to the jet mass distribution
in the top mass window. The plot on the left corresponds to a truth-jet analysis. The
plot on the right depicts the effects of detector smearing. The statistics reflect 100 fb−1 of
integrated luminosity.
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(p min
T = 1TeV, R = 0.7)

Side-band Analysis with our Ansatz for the Background

Maximum likelihood fit.  Back+Signal



Signal Significance

pT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 106571 6868 671 10.3 0.73 0.74 0.064
5% 120717 8137 715 11.4 0.01 2.01 0.067
-5% 89136 5895 615 9.6 0.95 0.46 0.066

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 189185 10892 800 13.7 0.09 1.52 0.058
5% 219189 14020 859 16.4 0.02 1.87 0.064
-5% 151556 9214 720 12.9 0.63 0.83 0.061

pT
lead ≥ 1500 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 13562 794 224 3.6 1.00 0.26 0.059
5% 17803 1275 256 5.0 0.89 0.58 0.072
-5% 10155 489 193 2.5 0.94 0.49 0.048

pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 18456 1045 252 4.2 0.75 0.72 0.057
5% 24921 1559 284 5.4 0.96 0.45 0.063
-5% 13315 693 213 3.3 1.00 0.20 0.052

Table 5: Estimate of upper limit on significance of peak resolution via single tag method,
accounting for detector smearing. SFIT and BFIT are the results of an extended maximum
likelihood fit. ∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These
results are derived with 100 fb−1 of integrated luminosity.
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pT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 26642 1712 335 5.1 1.00 0.19 0.064
5% 30206 1995 346 5.8 0.96 0.45 0.066
-5% 22371 1379 288 4.8 1.00 0.11 0.062

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 47277 2730 399 6.8 0.98 0.38 0.058
5% 54870 3419 424 8.1 0.87 0.60 0.062
-5% 37910 2274 354 6.4 1.00 0.21 0.060

pT
lead ≥ 1500 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 3381 201 112 1.8 1.00 0.06 0.059
5% 4418 346 130 2.7 1.00 0.07 0.078
-5% 2519 136 96 1.4 1.00 0.09 0.054

pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4609 259 125 2.1 1.00 0.18 0.056
5% 6231 382 144 2.6 1.00 0.12 0.061
-5% 3320 174 99 1.6 1.00 0.06 0.052

Table 6: Estimate of upper limit on significance of peak resolution via single tag method,
accounting for detector smearing. SFIT and BFIT are the results of an extended maximum
likelihood fit. ∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These
results are derived with 25 fb−1 of integrated luminosity.
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25fb−1

100fb−1

pT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT
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5% 30206 1995 346 5.8 0.96 0.45 0.066
-5% 22371 1379 288 4.8 1.00 0.11 0.062

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 47277 2730 399 6.8 0.98 0.38 0.058
5% 54870 3419 424 8.1 0.87 0.60 0.062
-5% 37910 2274 354 6.4 1.00 0.21 0.060

pT
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pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4609 259 125 2.1 1.00 0.18 0.056
5% 6231 382 144 2.6 1.00 0.12 0.061
-5% 3320 174 99 1.6 1.00 0.06 0.052

Table 6: Estimate of upper limit on significance of peak resolution via single tag method,
accounting for detector smearing. SFIT and BFIT are the results of an extended maximum
likelihood fit. ∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These
results are derived with 25 fb−1 of integrated luminosity.
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pT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 26642 1712 335 5.1 1.00 0.19 0.064
5% 30206 1995 346 5.8 0.96 0.45 0.066
-5% 22371 1379 288 4.8 1.00 0.11 0.062

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 47277 2730 399 6.8 0.98 0.38 0.058
5% 54870 3419 424 8.1 0.87 0.60 0.062
-5% 37910 2274 354 6.4 1.00 0.21 0.060

pT
lead ≥ 1500 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 3381 201 112 1.8 1.00 0.06 0.059
5% 4418 346 130 2.7 1.00 0.07 0.078
-5% 2519 136 96 1.4 1.00 0.09 0.054

pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4609 259 125 2.1 1.00 0.18 0.056
5% 6231 382 144 2.6 1.00 0.12 0.061
-5% 3320 174 99 1.6 1.00 0.06 0.052

Table 6: Estimate of upper limit on significance of peak resolution via single tag method,
accounting for detector smearing. SFIT and BFIT are the results of an extended maximum
likelihood fit. ∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These
results are derived with 25 fb−1 of integrated luminosity.
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Double mass-taggingpT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 13488 2789 237 11.8 0.99 0.33 0.207
5% 14653 3395 255 13.3 0.94 0.50 0.232
-5% 11762 2516 212 11.9 0.99 0.31 0.214

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 38101 5813 358 16.2 0.72 0.76 0.153
5% 43993 6943 386 18.0 0.66 0.81 0.158
-5% 31290 4655 320 14.6 0.57 0.89 0.149

pT
lead ≥ 1500 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 2341 430 94 4.6 0.99 0.35 0.184
5% 2968 624 110 5.7 0.96 0.45 0.210
-5% 1593 436 79 5.5 0.82 0.66 0.274

pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4053 625 129 5.2 1.00 0.28 0.154
5% 5532 801 128 6.3 0.93 0.50 0.145
-5% 2965 399 100 4.0 1.00 0.14 0.135

Table 9: Estimate of upper limit on significance of peak resolution via double tag method,
accounting for detector smearing, and jet energy scale (JES). SFIT and BFIT are the results
of an extended maximum likelihood fit. ∆S is the error on SFIT. Significance nσ is defined
in Eq. (5.18). These results are derived with 100 fb−1 of integrated luminosity.
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100fb−1

Add a Mass tag on the subleading jet.  

We augment the single-tag analysis for the tt̄ signal, by simply requiring that the subleading
jet mass be in the top mass window, without imposing a pT cut. This cut preferentially
removes more background events than the signal events, without biasing the distributions.
The sideband analysis, applied to the leading jet, remains the same as for the single top-
tagging case. As we shall see even this simple treatment yields a sizable improvement in
the significance. Roughly half of the events have smaller pT than the minimum pT for the
leading jet as shown in Fig. 13. Although, by definition, a subleading jet has smaller pT

than the leading one, its pT distribution is peaked at the pT
min, and only small portion of

events are in the smaller pT tail region. The number of events for the signal and background,
at the truth-level, are presented in table 7. To get an idea on how the subleading mass cut
affects our signal and background samples, one can compare the numbers given in table 3
with the ones in 7. For example, we see that at truth level for R = 0.4 and pT

min = 1 TeV
the size of the signal sample is decreased by 50% while the background sample by roughly
12%. This is consistent with the results shown in Figs. 8 and 5 in which the analysis is
done for a fixed pT .

In principle, one could apply a sideband analysis to the subleading jet. However, due
to the fact that the pT is allowed to float, the required analysis would necessarily be more
complicated. The double-tagging method increases the signal-to-background ratio, and the
significance of the measurements increases. The leading effects of detector resolution and
jet energy scale on the signal and background acceptance can be seen in Tables 9 and
10. We find that our double tagging method yields a reach of up to pT

min ∼ 1.5 TeV
with 100 fb−1, without relying on b-tagging or jet-shapes (to be discussed in the following
section).
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Figure 13: We compare the pT distribution of the subleading jet for the tt̄ signal with (the
red dotted curve) and without (the black solid curve) leading detector effects. The plot on
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respectively.
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pT
lead ≥ 1000 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 26642 1712 335 5.1 1.00 0.19 0.064
5% 30206 1995 346 5.8 0.96 0.45 0.066
-5% 22371 1379 288 4.8 1.00 0.11 0.062

pT
lead ≥ 1000 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 47277 2730 399 6.8 0.98 0.38 0.058
5% 54870 3419 424 8.1 0.87 0.60 0.062
-5% 37910 2274 354 6.4 1.00 0.21 0.060

pT
lead ≥ 1500 GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 3381 201 112 1.8 1.00 0.06 0.059
5% 4418 346 130 2.7 1.00 0.07 0.078
-5% 2519 136 96 1.4 1.00 0.09 0.054

pT
lead ≥ 1500 GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4609 259 125 2.1 1.00 0.18 0.056
5% 6231 382 144 2.6 1.00 0.12 0.061
-5% 3320 174 99 1.6 1.00 0.06 0.052

Table 6: Estimate of upper limit on significance of peak resolution via single tag method,
accounting for detector smearing. SFIT and BFIT are the results of an extended maximum
likelihood fit. ∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These
results are derived with 25 fb−1 of integrated luminosity.
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Summary
Jet functions provide a systematic approach to  

describe the jet mass background

Ex: SM Top Reach (without b-tagging, nor jet structure)

p
min

T
∼ 1.5 TeV top-jet pairs with 100fb−1

∼ 1.0 TeV top-jet with 25fb−1

Portability: Can be improved by  higher orders,
Resummation techniques, 

Soft contributions.

Jet functions can even be used to understand 
Structure of Jets. Leading to New Observables 
that can suppress the background further.

LA, S. J. Lee, G. Perez, G. Sterman, I. Sung, and J. Virzi 
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not affect the predictive quality of the theory curves, since it affects both sides of Eqs. (3.8)
and (3.9). The scaling allows us to present the results from the different event generators
on a single plot. Note, as mentioned before, that for mJ ! pT R, higher order corrections
will contribute, pushing the distribution down, with a Sudakov-like suppression, which can
be seen in the lower mass region for pT = 1.5 TeV and R = 0.7.

In a typical experimental setup, a lower cut over pT will be assumed and the distribu-
tions will be integrated above that pmin

T cut. Thus we can integrate over the appropriate
region on Eq. (3.7), which leads to the analog of Eqs. (3.8) and (3.9) for the pT -integrated
jet mass cross section,

dσc
pred(R)

dmJ
=

∫ ∞

pmin
T

dpT Jc (mJ , pT , R)
∑

c′

(

dσc′(R)

dpT

)

MC

, (3.10)

where Jc is defined as before. The MC differential cross section is obtained by summing
over the contributions from both quark and gluon jets. Therefore, the cross section’s shape
is characterized by an admixture of quark and gluon jets and should interpolate between
the two curves, c = q and g. In Fig. 4, we compare leading jet mass distribution for
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Figure 4: Comparison between the theoretical jet mass distributions and MC leading jet
mass distribution from Sherpa. The minimum pT and cone size are indicated on the plots.
A gluon (quark) hypothesis is the prediction made if the entire contribution were from
gluon (quark) jets (cf Eq. (3.10)).

events where the leading jet has pT ≥ 1 TeV obtained from Sherpa. The quark and gluon
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2.2 Cross Sections

In table 1 we present cross sections for producing final state (hadronic level) jets with pT ≥
1 TeV for the different MC simulations. There are large uncertainties in the cross sections,
due to differences between the MLM and CKKW matching, between MC generators, and
between PDFs. It is outside the scope of this paper to explore the reasons behind these
differences. We estimate a 100% systematic uncertainty associated with the tt̄ cross section,
and a 20% systematic uncertainty in the QCD jet cross section.

Process Generator PDF Matching Cross Section
pp → tt̄(j) SHERPA 1.0.9 CTEQ6M CKKW 135 fb
pp → tt̄(j) SHERPA 1.1.2 CTEQ6M CKKW 149 fb
pp → tt̄(j) MG/ME 4 CTEQ6M MLM 68 fb
pp → tt̄(j) MG/ME 4 CTEQ6L MLM 56 fb
pp → tt̄ Pythia 6.4 CTEQ6L - 157 fb
pp → tt̄ Pythia 8.1 CTEQ6M - 174 fb

pp → jj(j) SHERPA 1.1.0 CTEQ6M CKKW 10.2 pb
pp → jj(j) MG/ME 4 CTEQ6L MLM 8.54 pb
pp → jj(j) MG/ME 4 CTEQ6M MLM 9.93 pb
pp → jj Pythia 6.4 CTEQ6L - 13.7 pb
pp → jj Pythia 8.1 CTEQ6M - 13.3 pb

Table 1: Cross sections for producing final state R = 0.4 leading cone jets with pT ≥ 1 TeV
and |η| ≤ 2. Generation level cuts were imposed as follows. Final state partons from the
hard scatter were required to have pT ≥ 20 GeV. For MG/ME, final state partons have
|η| ≤ 4.5. Processes with a trailing (j) suffix indicate that 2 → 2 and 2 → 3 processes are
represented.

2.3 Modelling Detector Effects

A transfer function, trained with full ATLAS detector simulation on high pT jet and high
pT tt̄ samples, was used to map particle level jets (Atlas truth jet reconstruction) onto a full
simulation model [19]. Transfer functions work by feeding back the differences between the
target collection (Full Simulation) and the source collection (Truth Jets). The differences
and efficiencies are stored as distributions, in the form of histograms, and binned in pT

and η. We refer to the collection of the smearing distributions as a transfer function.
It is important to note that transfer functions are applicable on events with similar jet
multiplicity and topology. We applied the transfer function (trained on Atlas truth jets) to
SISCone truth jets, which preserve the salient characteristics of the Atlas truth jets. We
used the transfer function to effect pT and mass smearing, but not reconstruction efficiency.
At the energies considered in this paper, reconstruction efficiency is very close to unity. In
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3.2.2 Pseudorapidity Independence of the Jet Mass Distribution

In general, we expect that NP signals will have a pseudorapidity dependence. Therefore, the
study of pseudorapidity dependence may provide a tool for NP searches (for an interesting
discussion see [42]). In Fig. 7, we plot the jet mass distributions for central and outer jets.
We observe consistency with the approximation that the distributions are to leading order,
independent of pseudorapidity.
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Figure 7: The R = 0.7 jet mass distribution for central jets (|η| < 1) and for jets with
1 ≤ |η| ≤ 2.5. Jets have pT ≥ 1 TeV. This plot is produced with the Sherpa MC.

4 High pT Hadronic Top Quarks

In this section, we discuss the collimation of the top quark decay products. In Fig. 8, we
plot the rate of collimation as a function of the top pT (for a related discussion and analysis
see [4, 5, 8]). We define collimation rate as the fraction of top quarks which reconstruct to
a jet having 140 GeV ≤ mJ ≤ 210 GeV.

To examine the efficiency of the jet mass methods, it is instructive to look at mass
distributions for the signal and background. We examine the distributions for events where
the leading jet pT exceeds 1000 GeV and 1500 GeV with C4 and C7 jets. In Fig. 1, we
plot the jet mass distribution for the tt̄ signal for pT

lead ≥ 1000 GeV. The efficiency of C7
jets for capturing the hadronic top is greater than that for C4 jets. For C4 jets, we still
observe pronounced structure around the W -mass (MW ), which diminishes for C7 jets. We
also note that the peak for the C7 jets moves closer to the top mass, indicating a higher
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Figure 8: The collimation rate for top quarks as a function of their transverse momentum,
for C4 (black solid curve) and C7 (red dashed curve) jets. Collimation rate is defined as
the fraction of top quarks with 140 GeV ≤ mJ ≤ 210 GeV.

efficiency for capturing the hadronic top. We expect that detector effects will further smear
the signal. Fig. 1 also shows the mass distributions including leading detector effects (using
transfer functions).

We note that the analysis has an inherent tension with regard to choosing the cone size
for the jet. The reconstruction cone should be sufficiently wide to capture all the daughter
products of the hadronic top. On the other hand, we need to keep the cone appropriately
small to keep out the QCD jet background and other soft contamination [5].

We describe the gross features of the top mass distribution, without providing a de-
tailed analytic expression for the top jet. † At next to leading order, we expect the top-jet
to be broken into two contributions, J t

QCD and J t
EW (at leading order it is just given by

the top bare mass). The first contribution, J t
QCD, is similar to that of the QCD jets. It is

characterized by a very short time scale of O(10) GeV and makes the top-jet mass harder.
Using factorization, this process can be calculated by methods similar to the one discussed
in the Appendix, fixing the mass of the final parton to mt and assuming it is stable. For our
purposes, the resulting broadening is subdominant for a top mass window of ±35 GeV. ‡

At leading order, the second contribution, J t
EW , is expected to be kinematical in nature, due

to the weak decay of the top quark. The time scale is longer (of order Γt/γt = O(0.2) GeV,

†For a more precise analysis in the case of e+e− collider and without providing a finite cone size see [11].
‡It is crucial to understand this behavior if one aims to improve the top mass measurement at the LHC.

At the moment this has been studied only for lepton colliders [11].
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Figure 14: The planar flow distribution is plotted for tt̄ and QCD jets with mass in the
top mass window, 140 GeV ≤ mJ ≤ 210 GeV. Sherpa and MG/ME distributions are
represented.

6 Jet Substructure

We discussed simple single- and double-mass tagging methods, and we found that we may
need additional handles in order to resolve SM tt̄ signals for smaller integrated luminosities
or higher pT . We discuss briefly the possibility of using substructure to further analyze
energetic jets in the top mass window. We defer the details to our recent work in [10]
(see also [27]), where we derive simple analytic expressions to approximate the jet shape
variable distributions. For developing additional tools to reslove tt̄ signals, there are ap-
proaches which exploit information outside of hadronic calorimeter [44] such as tracker or
electromagnetic calorimeter. But we limit ourselves to the information encoded only within
the hadronic calorimeter to develop significance for resolving tt̄ signals. We do not also
discuss the possibility of b-tagging for high pT top-jet [7], which is still under speculation
for the range of pT relevant for our analysis.

Jet shapes are the extensions of well-known event shapes, used at lepton colliders,
applied to the analysis of energy flow inside single jets. The fact that we consider only jets
with high mass is crucial since it allows us to control the shape of various distributions
related to energy flow in a perturbative manner. As an example, we examine the planar
flow variable, which measures the extent to which the energy flow inside the jet is linear
or planar. Planar flow (Pf) is defined as follows. We first define an (unnormalized) event
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